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Most NLP Tasks. E.g. Ainclude extra-linguistics?

e POS Tagging e Additive Inclusion

e Document Classification ) C

e Sentiment Analysis e Adaptive Extralinguistics

e Stance Detection o Adapting Embeddings
e Mental Health Risk Assessment o Adapting Models
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(language modeling, QA, ... ¢ Correcting for bias
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Human Centered NLP:
1. Model language as a human process
2. Use language to better understand humans.
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Differential Language Analysis

Input:

Linguistic features

Human or community attribute
Output:

Features distinguishing attribute

Goal: Data-driven insights about an attribute



E.g. Words distinguishing communities with increases in real estate prices.

ost
secret 521 texas P bprlces

|nternat|onal
starbucks
californiacreate ¢

o downtOV\‘" c&?pm%%l ycredlttbh tm e d I a

super @

t.,rmterne

ex erience
CalltaX p industry "

content gwde PY sales e
~hellamarketing 'in’
followback blo g aws e arCh

= a da N a

" Lt . o
correlation strength relative frequency




Differential Language Analysis

Input:

Linguistic features

Human or community attribute
Output:

Features distinguishing attribute
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e Logistic Regression over Standardized variables

e (dds Ratio
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Differential Language Analysis

Methods of “Correlation” Analysis for binary outcomes:

e Logistic Regression over Standardized variables

e (dds Ratio
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is the size of the background

Bayesian term for “smoothing”: accounts for uncertainty as a
function of event frequency (i.e. words observed less) by

integrating “prior” beliefs mathematically.
“Informative”: the prior is based on past evidence. Here, the
total frequency of the word.
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Natural language is generated by people.

“The common misconception is that language has
got to do with words and what they mean. It does
not. It has to do with people and what they mean.”

Channon, Mocteller & Clark & Mairesse, Walker, Hovg & Sooganrd,
1948 Walloce 1963 Sehober, 1992 et al., 2007 2015
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Natural language is generated by people.

Vet, our models:

e.g., pro gun
control?
yes, no

Mohammad, S., Kiritchenko, S., Sobhani, P., Zhu, X., & Cherry, C. (2016).
Semeval-2016 task 6: Detecting stance in tweets. In Proceedings of the
10th International Workshop on Semantic Evaluation.
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Natural language is generated by people.

personality
demographics
emotional states

political ideology

linguictic style
(Pennebaker, 2007)
latent vser traite
(Kulkorwi et af,, 2018)
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2. Often, there are 'already-available” human attributes.

3. Qur data and modele are (human) biased.
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Approaches to Human Factor Inclusion

1. Adaptive: Allow meaning if language to change depending

on human context. (also called “compositional”)
(e.g. “sick” said from a young individual versus old individual)

2. Additive: Include direct effect of human factor on outcome.
(e.g. age and distinguishing PTSD from Depression)

3. Bias Correction: Optimize so as not to pick up on
unwanted relationships.

(e.g. image captioner label pictures of men in kitchen as women)



Human Factor
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What are human “factors”?

Additive: Include direct effect of human factor on outcome.
(e.g. age and distinguishing PTSD from Depression)

Bias Correction: Optimize so as not to pick up on
unwanted relationships.

(e.g. image captioner label pictures of men in kitchen as women)



Adaptation Approach: Domain Adaptation
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Human Factors

--- Any attribute, represented as a continuous or discrete variable, of the humans
generating the natural language.

E.g.
e Gender
e Age
e Personality
e Ethnicity
e Socio-economic status
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Adaptation

typically requires putting people into discrete bins



“most latent variables of interest to psychiatrists and personality

and clinical psychologists are dimensional [continuous]”
(Haslam et al., 2012)
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and clinical psychologists are dimensional [continuous]”
(Haslam et al., 2012)




Our Method: Continuous Adaptation

User Train Transformed
Factors Instances Labels Instances Labels

Learning
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(Lynn et al., 2017)
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Our Method: Continuous Adaptation

User Train Transformed
Factors Instances Labels Instances Labels

Learning
Continuous
_>

Adaptation

Gender Score Features QOriginal Gender Copy
-2 X > X compose(-.2, X)

(Lynn et al., 2017)




User Factor Adaptation: Handling multiple factors

Replicate features for each factor:

A compositional function ¢ combines d user
factor scores f,, 4 with original feature values x:

(I)(Xa ’U,) — <X, C(fu,l)x)7 C(fu,27x)7 e 7C(fu,d7X)>

(Lynn et al., 2017)



User Factor Adaptation: Handling multiple factors

Replicate features for each factor:

A compositional function ¢ combines d user
factor scores f,, 4 with original feature values x:

(I)(Xa ’U,) — <X, C(fu,l’x)a C(fu,27x)7 e 7C(fu,d7 X)>

User  Factor Augmented Instance

Classes d(x,u)
User 1 F (x,%,0,0,---,0)
User 2 Fy (x,0,%x,0,---,0)
User3 Fy, Fj (x,%,0,%, -, 0)
User 4 Ey, (x,0,0,---, 0, x)

Table 1: Discrete Factor Adaptation: Augmen-
tations of an original instance vector x under dif-
ferent factor class mappings. With k£ domains the
augmented feature vector is of length n(k + 1).

(Lynn et al., 2017)



User Factor Adaptation: Handling multiple factors

Replicate features for each factor:

A compositional function ¢ combines d user
factor scores f,, 4 with original feature values x:
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User  Factor Augmented Instance

Classes O (x,u)
User 1 Fi (x,%,0,0,---,0)
User 2 Iy (x,0,%,0,---,0)
g User3 I, F3 (x,%,0,%, -, 0)
/mw'::m_ ”ml::mw User 4 Fk <X, O, 0,- iy 0, X>

Table 1: Discrete Factor Adaptation: Augmen-
tations of an original instance vector x under dif-
ferent factor class mappings. With £ domains the
augmented feature vector is of length n(k + 1).

(Lynn et al., 2017)



Main Results

Adaptation improves over unadapted baselines (Lynn et al., 2017)

Latent
No (User

Task Metric | Adaptation Gender Personality Embed)
Stance F1 649| 65.1(+0.2) 66.3(+1.4) 67.9(+3.0)
Sarcasm | F1 739| 751(+1.2) 75.6(+1.7) 77.3(+3.4)
Sentiment | Acc. 60.6 61.0 (+0.4) 61.2 (+0.6) 60.7 (+0.1)
PP-Attach | Acc. 71.0 70.7 (-0.3) 70.2 (-0.8) 70.8 (-0.2)
HON Acc. 91.7] 91.9(+0.2) 91.2 (-0.5) 90.9 (-0.8)




Example: How Adaptation Helps
Vn\wlgrrzeandjectivesﬁsa rcasm

Men
more adjectives—no sarcasm
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more “male” more “female”



Problem

User factors are not always available.



Solution: User Factor Inference

past tweets
Niranjan @b_niranjan - Sep 2 v .
There must be a word for trending #hashtags that you know you will regret if you > I nfe rre d fa Cto rs
click. s there?
i s Known
iranjan @b_niranjan - Aug 31 v
Passwords spiral: Forget password for the acnt you use twice a year. Ask for Ag e (S ap et al. 2014 )
reset';I .Can.‘t us(; Erewoug Crtja\lte3 a; new one to forget later. Gender ( S3 D et al. 201 4)
iranjan @b_niranjan - Ju v i
Thrilled to hear @acl2017's diversity efforts as the first thing in the conference. Pe rsona I |ty ( Pa rk et d I . 2 O 1 5 )
0 0 01 B8 Latent
User Embeddings
(Kulkarni et al. 2017)
Word2Vec

TF-IDF



Backeround Size

Using more background tweets to infer factors produces larger gains

personality (cont) user embed (cont)
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Full User Factors Adaptation Pipeline: with latent factors from training

doc-id user-id document d=128

m —> embdngs
m —> embdngs
—> embdngs
m —> embdngs
—> embdngs
—> embdngs

total documents



Full User Factors Adaptation Pipeline: with latent factors from training

users x avg_embeddings

doc-id user-id document _
d=128 B - -
|42 [l text..  gug embdngs |

0 O
0
B

text... gy embdngs
3 -

. ) i
total documents
Step 1: Create User Factors user x factors
d=3

fi, f2, other lower dimension)
16 f1, f2, f3
f1, 2, f3




Full User Factors Adaptation Pipeline: with latent factors from training
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Full User Factors Adaptation Pipeline: with latent factors from training
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Full User Factors Adaptation Pipeline: with latent factors from training
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Full User Factors Adaptation Pipeline: with latent factors from training
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users x avg_embeddings

[ I A.Savethe
transformation (V)
B3 ) embdngs from PCA during

|| This was training data; Wi embdngs training
now assume test l

doc-id user-id document

embdngs B. Apply V to user
x avg_embeddings

matrix during

N users test/trial.
What about when predicting on

new documents?
(easy as A, B, C)

total documents

Transformati

user-adapted iy on Matrix (V)

emb x f1; emb « (7; emb x f3 user x factors

f1, f2, f3
f1, f2, f3
e s MG et socument B B 225

features by user
factors just like in

emb x f1; emb « i2; emb x f3 g

ther lower dimension)
emb x f1; emb x f2; emb x f3 g

o
==u= :
0
L

training.



Approaches to Human Factor Inclusion

4 )
1. Adaptive: Allow meaning if language to change depending

on human context. (also called “compositional”)
(e.g. “sick” said from a young individual versus old individual)
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2. Additive: Include direct effect of human factor on outcome.
(e.g. age and distinguishing PTSD from Depression)

3. Bias Correction: Optimize so as not to pick up on
unwanted relationships.

(e.g. image captioner label pictures of men in kitchen as women)
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Ethics in NLP - Bias

Consequences of Sociodemographic Bias in NLP Models:

e Outcome Disparity: Predicted distribution given A,
are dissimilar from ideal distribution given A

e Error Disparity: Predicts less accurate for authors of given demographics.

Shah, D., Schwartz, H. A., Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. In
ACL-2020: Proceedings of the Association for Computational Linguistics.
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Two Examples
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Zhao, Jieyu, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and
Kai-Wei Chang. "Men Also Like Shopping: Reducing Gender Bias
Amplification using Corpus-level Constraints." In Proceedings of
the 2017 Conference on Empirical Methods in Natural Language
Processing. 2017.
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Zhao, Jieyu, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and
Kai-Wei Chang. "Men Also Like Shopping: Reducing Gender Bias
Amplification using Corpus-level Constraints." In Proceedings of
the 2017 Conference on Empirical Methods in Natural Language

“EI'I'OI' Disparity” Processing. 2017.

distance from “standard” WSJ author demog}é‘bﬁi\és
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Person-level
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Our data and models are (human) biased.

“Outcome Disparity”

Person-level
s attribute = 1
= attribute = 2

|deal Proportion Result from Prediction

“Error Disparity”

Ideal Error Rates Error Rates from Prediction
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Outcome Disparity

outcome disparity
The distribution of outcomes, given attribute 4,
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Disparities
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outcome disparity
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Origins of Bias
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WSJ Effect

Correlates with demographics

Jagrgensen et al. (WNUT 2015)
Hovy & Seggard (ACL 2015)

Distance from “Standard”
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Label Bias - Example: Label word with drawing

South Africa

Brazil
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Devin Coldeway. 2017. TechCrunch: Google releases millions of bad drawings for you (and your Al) to paw through
https://techcrunch.com/2017/08/25/google-releases-millions-of-bad-drawings-for-you-and-your-ai-to-paw-through/
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Zhao et al. (ACL 2015)

@ Overamplifiction - Model Amplifies Bias

BIAS = 0.66 BIAS = 0.84




Overamplification
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Semantic Bias
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Semantic Bias
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E.g. Coreference resolution:
connecting entities to references (i.e. pronouns).

“The doctor told Mary that she had run some blood tests.”

e

semantic bias
Non-ideal associations between attributed
lexeme (e.g. gendered pronouns) and
non-attributed lexeme (e.g. occupation).

selection bias
The sample of observations
themselves are not representative
of the application population.

error disparity
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Shah, D., Schwartz, H. A., Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. In

ACL-2020: Proceedings of the Association for Computational Linguistics.




Predictive Bias Framework for NLP

B origin @ over-amplification label bias outcome disparity
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Summary of Countermeasures

Source Origin Countermeasures

o
anl.lon

Label Bias Post-stratification, Re-train

annotators
o Stratified sampling,
data.%ction Selection Bias Post-stratification or
Re-weighing techniques

Synthetically match
m@ls Overampilification distributions, add outcome
disparity to cost function

Use above techniques and

dd' N
ings Semantic Bias re-train embeddings




Bias - Takeaways

Bias, as outcome and error disparities, can result from many origins:
e the embedding model
e the feature sample
e the fitting process
e the outcome sample

Our understanding is evolving:
This is an active area of work, both theoretically and technically!
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Ethics in NLP

Privacy P
e Risk Categories: { e \

o Revealing unintended private information Q‘{\‘

o Targeted persuasion
e Mitigation strategies:
Informed consent -- let participants know and opportunity to opt-in/-out
Do not share / secure storage
Federated learning -- obfuscate to the point of preserving privacy
Transparency in information targeting

“You are being shown this ad because ...”

O O O O
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Ethics in NLP Research

ACM Code of Ethics; General Ethical Principles:

e Contribute to society and to human well-being, acknowledging that all people are stakeholders
in computing.

e Avoid harm.
e Be honest and trustworthy.
e Be fair and take action not to discriminate.

e Respect the work required to produce new ideas, inventions, creative works, and computing
artifacts.

e Respect privacy.

e Honor confidentiality.

https://www.acm.org/code-of-ethics
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Ethics in NLP

Human Subjects Research

Observational versus Interventional

(The Belmount Report, 1979)

(i) Distinction of research from practice.

(i) Risk-Benefit criteria

(iii) Appropriate selection of human subjects for participation in research
(iv) Informed consent in various research settings.






